185 lines
6.4 KiB
Python
185 lines
6.4 KiB
Python
from flask import Flask, request, jsonify, send_file
|
|
from paddleocr import PaddleOCR
|
|
import base64
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
import traceback
|
|
import numpy as np
|
|
import cv2
|
|
import logging
|
|
import os
|
|
import uuid
|
|
import datetime
|
|
|
|
logging.basicConfig(
|
|
level=logging.DEBUG,
|
|
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
app = Flask(__name__)
|
|
|
|
def get_dir_name():
|
|
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
unique_id = str(uuid.uuid4())[:8]
|
|
return f"{timestamp}_{unique_id}"
|
|
|
|
def create_debug_directory(dir_name):
|
|
"""Erstellt ein eindeutiges Verzeichnis für Debug-Bilder"""
|
|
base_dir = 'images'
|
|
full_path = os.path.join(base_dir, dir_name)
|
|
|
|
if not os.path.exists(base_dir):
|
|
os.makedirs(base_dir)
|
|
|
|
os.makedirs(full_path)
|
|
return full_path
|
|
|
|
def preprocess_image(image, debug_dir):
|
|
"""Bildverarbeitung mit optionalen Optimierungen"""
|
|
try:
|
|
# Graustufenkonvertierung
|
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
|
|
|
# Kontrastverbesserung mit CLAHE
|
|
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) # Erhöhter Clip-Limit
|
|
enhanced = clahe.apply(gray)
|
|
|
|
# Rauschunterdrückung mit optimierten Parametern
|
|
denoised = cv2.fastNlMeansDenoising(
|
|
enhanced,
|
|
h=15, # Stärkere Rauschreduzierung
|
|
templateWindowSize=7,
|
|
searchWindowSize=21
|
|
)
|
|
|
|
# Debug-Bilder speichern
|
|
# cv2.imwrite(os.path.join(debug_dir, 'gray.png'), gray)
|
|
# cv2.imwrite(os.path.join(debug_dir, 'enhanced.png'), enhanced)
|
|
# cv2.imwrite(os.path.join(debug_dir, 'denoised.png'), denoised)
|
|
|
|
# Thumbnail als WebP
|
|
denoised_rgb = cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
|
|
thumbnail = Image.fromarray(denoised_rgb)
|
|
thumbnail.thumbnail((256, 256))
|
|
thumbnail_path = os.path.join(debug_dir, 'thumbnail.webp')
|
|
thumbnail.save(thumbnail_path, 'WEBP', quality=85)
|
|
|
|
return denoised
|
|
|
|
except Exception as e:
|
|
logger.error(f"Preprocessing error: {str(e)}")
|
|
raise
|
|
|
|
@app.route('/api/ocr', methods=['POST'])
|
|
def ocr_endpoint():
|
|
debug_dir = None
|
|
try:
|
|
# Verzeichnis erstellen
|
|
dir_name = get_dir_name()
|
|
debug_dir = create_debug_directory(dir_name)
|
|
|
|
# Bildverarbeitung
|
|
data = request.get_json()
|
|
image_data = base64.b64decode(data['image'])
|
|
|
|
# Originalbild als WebP speichern
|
|
original_image = Image.open(BytesIO(image_data)).convert('RGB')
|
|
webp_path = os.path.join(debug_dir, 'original.webp')
|
|
original_image.save(webp_path, 'WEBP', quality=50)
|
|
|
|
# WebP-Bild für Verarbeitung laden
|
|
with open(webp_path, 'rb') as f:
|
|
webp_image = Image.open(BytesIO(f.read())).convert('RGB')
|
|
|
|
# Vorverarbeitung
|
|
processed_image = preprocess_image(np.array(webp_image), debug_dir)
|
|
|
|
# OCR mit optimierter Konfiguration
|
|
ocr = PaddleOCR(
|
|
use_angle_cls=True,
|
|
lang='en',
|
|
det_model_dir='en_PP-OCRv3_det',
|
|
rec_model_dir='en_PP-OCRv3_rec',
|
|
det_limit_side_len=processed_image.shape[0] * 2,
|
|
use_dilation=True,
|
|
det_db_score_mode='fast'
|
|
)
|
|
|
|
# OCR durchführen
|
|
try:
|
|
result = ocr.ocr(processed_image, rec=True, cls=True)
|
|
|
|
# Debug-Informationen in Datei speichern
|
|
with open(os.path.join(debug_dir, 'ocr_results.txt'), 'w') as f:
|
|
f.write(f"Raw OCR result:\n{result}\n\n")
|
|
|
|
if not result:
|
|
logger.warning("No results returned from OCR")
|
|
return jsonify({
|
|
'warning': 'No text detected',
|
|
'debug_dir': debug_dir
|
|
}), 200
|
|
|
|
if not result[0]:
|
|
logger.warning("Empty results list from OCR")
|
|
return jsonify({
|
|
'warning': 'Empty results list',
|
|
'debug_dir': debug_dir
|
|
}), 200
|
|
|
|
# Ergebnisse verarbeiten
|
|
extracted_results = []
|
|
for idx, item in enumerate(result[0]):
|
|
try:
|
|
box = item[0]
|
|
text = item[1][0] if item[1] else ''
|
|
confidence = float(item[1][1]) if item[1] and len(item[1]) > 1 else 0.0
|
|
|
|
extracted_results.append({
|
|
'box': box,
|
|
'text': text,
|
|
'confidence': confidence,
|
|
'name': dir_name
|
|
})
|
|
except Exception as proc_err:
|
|
logger.error(f"Error processing result {idx}: {str(proc_err)}")
|
|
|
|
# Statistiken in Debug-Datei speichern
|
|
with open(os.path.join(debug_dir, 'statistics.txt'), 'w') as f:
|
|
f.write(f"Total results: {len(extracted_results)}\n")
|
|
if extracted_results:
|
|
avg_confidence = np.mean([r['confidence'] for r in extracted_results])
|
|
f.write(f"Average confidence: {avg_confidence}\n")
|
|
f.write("\nDetailed results:\n")
|
|
for idx, result in enumerate(extracted_results):
|
|
f.write(f"Result {idx+1}:\n")
|
|
f.write(f"Text: {result['text']}\n")
|
|
f.write(f"Confidence: {result['confidence']}\n")
|
|
f.write(f"Name: {dir_name}\n")
|
|
f.write(f"Box coordinates: {result['box']}\n\n")
|
|
|
|
return jsonify({
|
|
'status': 'success',
|
|
'results': extracted_results,
|
|
})
|
|
|
|
except Exception as ocr_err:
|
|
logger.error(f"OCR processing error: {str(ocr_err)}")
|
|
logger.error(traceback.format_exc())
|
|
return jsonify({
|
|
'error': 'OCR processing failed',
|
|
'details': str(ocr_err),
|
|
'debug_dir': debug_dir
|
|
}), 500
|
|
|
|
except Exception as e:
|
|
logger.error(f"Fehler: {str(e)}")
|
|
return jsonify({
|
|
'error': 'Verarbeitungsfehler',
|
|
'details': str(e),
|
|
'debug_dir': dir_name if debug_dir else None
|
|
}), 500
|
|
|
|
if __name__ == '__main__':
|
|
app.run(host='0.0.0.0', port=5000, debug=False) |