from flask import Flask, request, jsonify from paddleocr import PaddleOCR import base64 from PIL import Image from io import BytesIO import traceback import numpy as np import cv2 # Import von OpenCV app = Flask(__name__) def preprocess_image(image): # Konvertierung zu Graustufen gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Kontrastverstärkung clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) enhanced = clahe.apply(gray) # Rauschreduzierung denoised = cv2.fastNlMeansDenoising(enhanced) # Binarisierung _, binary = cv2.threshold(denoised, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return binary @app.route('/ocr', methods=['POST']) def ocr_endpoint(): try: if not request.is_json: return jsonify({'error': 'Content-Type must be application/json'}), 400 data = request.get_json() if not data or 'image' not in data: return jsonify({'error': 'No image provided'}), 400 image_b64 = data['image'] if not image_b64: return jsonify({'error': 'Empty image data'}), 400 try: image_data = base64.b64decode(image_b64) except Exception as decode_err: return jsonify({'error': 'Base64 decode error', 'details': str(decode_err)}), 400 try: image = Image.open(BytesIO(image_data)).convert('RGB') image = preprocess_image(image) image = np.array(image) # Konvertieren zu numpy.ndarray except Exception as img_err: return jsonify({'error': 'Invalid image data', 'details': str(img_err)}), 400 # Optional: Bildgröße anpassen, falls erforderlich max_width = 1920 max_height = 1080 height, width, _ = image.shape if width > max_width or height > max_height: aspect_ratio = width / height if aspect_ratio > 1: new_width = max_width new_height = int(max_width / aspect_ratio) else: new_height = max_height new_width = int(max_height * aspect_ratio) image = np.array(Image.fromarray(image).resize((new_width, new_height))) # Initialisieren Sie PaddleOCR innerhalb des Handlers ocr = PaddleOCR(use_angle_cls=True, lang='en') # Initialisierung innerhalb des Handlers result = ocr.ocr(image, rec=True, cls=True) # Extrahieren der Texte und Konfidenzwerte extracted_results = [] for item in result[0]: box = item[0] # Die Koordinaten der Textbox text = item[1][0] # Der erkannte Text confidence = item[1][1] # Der Konfidenzwert extracted_results.append({ 'box': box, 'text': text, 'confidence': confidence }) return jsonify(extracted_results) except Exception as e: traceback.print_exc() return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)