backend
This commit is contained in:
commit
4d7a52ee99
|
|
@ -0,0 +1,4 @@
|
||||||
|
.env
|
||||||
|
__pycache__
|
||||||
|
database.db
|
||||||
|
debug_images
|
||||||
|
|
@ -0,0 +1,162 @@
|
||||||
|
# deck_endpoints.py
|
||||||
|
|
||||||
|
from flask import Blueprint, request, jsonify
|
||||||
|
import sqlite3
|
||||||
|
import os
|
||||||
|
|
||||||
|
deck_bp = Blueprint('deck_bp', __name__)
|
||||||
|
|
||||||
|
DATABASE = 'mydatabase.db'
|
||||||
|
|
||||||
|
def get_db_connection():
|
||||||
|
conn = sqlite3.connect(DATABASE)
|
||||||
|
conn.row_factory = sqlite3.Row
|
||||||
|
return conn
|
||||||
|
|
||||||
|
# Erstellen der Tabellen, falls sie nicht existieren
|
||||||
|
def init_db():
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
# Tabelle Deck erstellen
|
||||||
|
cursor.execute('''
|
||||||
|
CREATE TABLE IF NOT EXISTS Deck (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
deckname TEXT UNIQUE NOT NULL
|
||||||
|
)
|
||||||
|
''')
|
||||||
|
# Tabelle Image erstellen
|
||||||
|
cursor.execute('''
|
||||||
|
CREATE TABLE IF NOT EXISTS Image (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
deckid INTEGER,
|
||||||
|
bildname TEXT,
|
||||||
|
iconindex INTEGER,
|
||||||
|
x1 REAL,
|
||||||
|
x2 REAL,
|
||||||
|
y1 REAL,
|
||||||
|
y2 REAL,
|
||||||
|
FOREIGN KEY(deckid) REFERENCES Deck(id)
|
||||||
|
)
|
||||||
|
''')
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
@deck_bp.route('/api/decks', methods=['POST'])
|
||||||
|
def create_deck():
|
||||||
|
data = request.get_json()
|
||||||
|
if not data or 'deckname' not in data:
|
||||||
|
return jsonify({'error': 'No deckname provided'}), 400
|
||||||
|
|
||||||
|
deckname = data['deckname']
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
try:
|
||||||
|
cursor.execute('INSERT INTO Deck (deckname) VALUES (?)', (deckname,))
|
||||||
|
conn.commit()
|
||||||
|
deck_id = cursor.lastrowid
|
||||||
|
conn.close()
|
||||||
|
return jsonify({'status': 'success', 'deck_id': deck_id}), 201
|
||||||
|
except sqlite3.IntegrityError:
|
||||||
|
conn.close()
|
||||||
|
return jsonify({'error': 'Deckname already exists'}), 400
|
||||||
|
|
||||||
|
@deck_bp.route('/api/decks', methods=['GET'])
|
||||||
|
def get_decks():
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
decks = cursor.execute('SELECT * FROM Deck').fetchall()
|
||||||
|
deck_list = []
|
||||||
|
for deck in decks:
|
||||||
|
deck_id = deck['id']
|
||||||
|
deck_name = deck['deckname']
|
||||||
|
# Alle Images für dieses Deck abrufen
|
||||||
|
images = cursor.execute('''
|
||||||
|
SELECT
|
||||||
|
bildname AS name,
|
||||||
|
iconindex,
|
||||||
|
x1,
|
||||||
|
x2,
|
||||||
|
y1,
|
||||||
|
y2
|
||||||
|
FROM Image
|
||||||
|
WHERE deckid = ?
|
||||||
|
''', (deck_id,)).fetchall()
|
||||||
|
images_list = [dict(image) for image in images]
|
||||||
|
# Deck mit Namen und zugehörigen Images hinzufügen
|
||||||
|
deck_dict = {
|
||||||
|
'name': deck_name,
|
||||||
|
'images': images_list
|
||||||
|
}
|
||||||
|
deck_list.append(deck_dict)
|
||||||
|
conn.close()
|
||||||
|
return jsonify(deck_list)
|
||||||
|
|
||||||
|
@deck_bp.route('/api/decks/<deckname>', methods=['DELETE'])
|
||||||
|
def delete_deck(deckname):
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
# Zuerst die Images löschen, die zu diesem Deck gehören
|
||||||
|
cursor.execute('SELECT id FROM Deck WHERE deckname = ?', (deckname,))
|
||||||
|
deck = cursor.fetchone()
|
||||||
|
if deck:
|
||||||
|
deck_id = deck['id']
|
||||||
|
cursor.execute('DELETE FROM Image WHERE deckid = ?', (deck_id,))
|
||||||
|
# Dann das Deck löschen
|
||||||
|
cursor.execute('DELETE FROM Deck WHERE id = ?', (deck_id,))
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
return jsonify({'status': 'success'}), 200
|
||||||
|
else:
|
||||||
|
conn.close()
|
||||||
|
return jsonify({'error': 'Deck not found'}), 404
|
||||||
|
|
||||||
|
@deck_bp.route('/image', methods=['PUT'])
|
||||||
|
def update_image():
|
||||||
|
data = request.get_json()
|
||||||
|
if not data:
|
||||||
|
return jsonify({'error': 'No data provided'}), 400
|
||||||
|
|
||||||
|
required_fields = ['deckid', 'bildname', 'iconindex', 'x1', 'x2', 'y1', 'y2']
|
||||||
|
if not all(field in data for field in required_fields):
|
||||||
|
return jsonify({'error': 'Missing fields in data'}), 400
|
||||||
|
|
||||||
|
deckid = data['deckid']
|
||||||
|
bildname = data['bildname']
|
||||||
|
iconindex = data['iconindex']
|
||||||
|
x1 = data['x1']
|
||||||
|
x2 = data['x2']
|
||||||
|
y1 = data['y1']
|
||||||
|
y2 = data['y2']
|
||||||
|
|
||||||
|
conn = get_db_connection()
|
||||||
|
cursor = conn.cursor()
|
||||||
|
cursor.execute('''
|
||||||
|
INSERT INTO Image (deckid, bildname, iconindex, x1, x2, y1, y2)
|
||||||
|
VALUES (?, ?, ?, ?, ?, ?, ?)
|
||||||
|
''', (deckid, bildname, iconindex, x1, x2, y1, y2))
|
||||||
|
conn.commit()
|
||||||
|
image_id = cursor.lastrowid
|
||||||
|
conn.close()
|
||||||
|
return jsonify({'status': 'success', 'image_id': image_id}), 201
|
||||||
|
|
||||||
|
@deck_bp.route('/image/<bildname>', methods=['GET'])
|
||||||
|
def get_images_by_bildname(bildname):
|
||||||
|
conn = get_db_connection()
|
||||||
|
images = conn.execute('SELECT * FROM Image WHERE bildname = ?', (bildname,)).fetchall()
|
||||||
|
conn.close()
|
||||||
|
image_list = [dict(image) for image in images]
|
||||||
|
return jsonify(image_list)
|
||||||
|
|
||||||
|
@deck_bp.route('/image/<bildname>/<int:iconindex>', methods=['GET'])
|
||||||
|
def get_image_by_bildname_and_index(bildname, iconindex):
|
||||||
|
conn = get_db_connection()
|
||||||
|
image = conn.execute('SELECT * FROM Image WHERE bildname = ? AND iconindex = ?', (bildname, iconindex)).fetchone()
|
||||||
|
conn.close()
|
||||||
|
if image is None:
|
||||||
|
return jsonify({'error': 'Image not found'}), 404
|
||||||
|
else:
|
||||||
|
return jsonify(dict(image)), 200
|
||||||
|
|
||||||
|
# Sicherstellen, dass die Datenbank existiert
|
||||||
|
if not os.path.exists(DATABASE):
|
||||||
|
init_db()
|
||||||
Binary file not shown.
|
|
@ -0,0 +1,60 @@
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
from io import BytesIO
|
||||||
|
import traceback
|
||||||
|
import numpy as np # Importieren von numpy
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Passen Sie die Sprache nach Bedarf an
|
||||||
|
|
||||||
|
@app.route('/ocr', methods=['POST'])
|
||||||
|
def ocr_endpoint():
|
||||||
|
try:
|
||||||
|
if not request.is_json:
|
||||||
|
return jsonify({'error': 'Content-Type must be application/json'}), 400
|
||||||
|
|
||||||
|
data = request.get_json()
|
||||||
|
if not data or 'image' not in data:
|
||||||
|
return jsonify({'error': 'No image provided'}), 400
|
||||||
|
|
||||||
|
image_b64 = data['image']
|
||||||
|
if not image_b64:
|
||||||
|
return jsonify({'error': 'Empty image data'}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image_data = base64.b64decode(image_b64)
|
||||||
|
except Exception as decode_err:
|
||||||
|
return jsonify({'error': 'Base64 decode error', 'details': str(decode_err)}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image = Image.open(BytesIO(image_data)).convert('RGB')
|
||||||
|
image = np.array(image) # Konvertieren zu numpy.ndarray
|
||||||
|
except Exception as img_err:
|
||||||
|
return jsonify({'error': 'Invalid image data', 'details': str(img_err)}), 400
|
||||||
|
|
||||||
|
# Optional: Bildgröße anpassen, falls erforderlich
|
||||||
|
# PaddleOCR kann große Bilder verarbeiten, aber zur Effizienz können Sie eine maximale Größe setzen
|
||||||
|
max_width = 1920
|
||||||
|
max_height = 1080
|
||||||
|
height, width, _ = image.shape
|
||||||
|
if width > max_width or height > max_height:
|
||||||
|
aspect_ratio = width / height
|
||||||
|
if aspect_ratio > 1:
|
||||||
|
new_width = max_width
|
||||||
|
new_height = int(max_width / aspect_ratio)
|
||||||
|
else:
|
||||||
|
new_height = max_height
|
||||||
|
new_width = int(max_height * aspect_ratio)
|
||||||
|
image = np.array(Image.fromarray(image).resize((new_width, new_height)))
|
||||||
|
|
||||||
|
result = ocr.ocr(image, rec=True, cls=True)
|
||||||
|
return jsonify(result)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
return jsonify({'error': str(e)}), 500
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(host='0.0.0.0', port=5000, debug=True)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,90 @@
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
from io import BytesIO
|
||||||
|
import traceback
|
||||||
|
import numpy as np
|
||||||
|
import cv2 # Import von OpenCV
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
def preprocess_image(image):
|
||||||
|
# Konvertierung zu Graustufen
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
||||||
|
|
||||||
|
# Kontrastverstärkung
|
||||||
|
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
||||||
|
enhanced = clahe.apply(gray)
|
||||||
|
|
||||||
|
# Rauschreduzierung
|
||||||
|
denoised = cv2.fastNlMeansDenoising(enhanced)
|
||||||
|
|
||||||
|
# Binarisierung
|
||||||
|
_, binary = cv2.threshold(denoised, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||||
|
|
||||||
|
return binary
|
||||||
|
|
||||||
|
@app.route('/ocr', methods=['POST'])
|
||||||
|
def ocr_endpoint():
|
||||||
|
try:
|
||||||
|
if not request.is_json:
|
||||||
|
return jsonify({'error': 'Content-Type must be application/json'}), 400
|
||||||
|
|
||||||
|
data = request.get_json()
|
||||||
|
if not data or 'image' not in data:
|
||||||
|
return jsonify({'error': 'No image provided'}), 400
|
||||||
|
|
||||||
|
image_b64 = data['image']
|
||||||
|
if not image_b64:
|
||||||
|
return jsonify({'error': 'Empty image data'}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image_data = base64.b64decode(image_b64)
|
||||||
|
except Exception as decode_err:
|
||||||
|
return jsonify({'error': 'Base64 decode error', 'details': str(decode_err)}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image = Image.open(BytesIO(image_data)).convert('RGB')
|
||||||
|
image = preprocess_image(image)
|
||||||
|
image = np.array(image) # Konvertieren zu numpy.ndarray
|
||||||
|
except Exception as img_err:
|
||||||
|
return jsonify({'error': 'Invalid image data', 'details': str(img_err)}), 400
|
||||||
|
|
||||||
|
# Optional: Bildgröße anpassen, falls erforderlich
|
||||||
|
max_width = 1920
|
||||||
|
max_height = 1080
|
||||||
|
height, width, _ = image.shape
|
||||||
|
if width > max_width or height > max_height:
|
||||||
|
aspect_ratio = width / height
|
||||||
|
if aspect_ratio > 1:
|
||||||
|
new_width = max_width
|
||||||
|
new_height = int(max_width / aspect_ratio)
|
||||||
|
else:
|
||||||
|
new_height = max_height
|
||||||
|
new_width = int(max_height * aspect_ratio)
|
||||||
|
image = np.array(Image.fromarray(image).resize((new_width, new_height)))
|
||||||
|
|
||||||
|
# Initialisieren Sie PaddleOCR innerhalb des Handlers
|
||||||
|
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Initialisierung innerhalb des Handlers
|
||||||
|
|
||||||
|
result = ocr.ocr(image, rec=True, cls=True)
|
||||||
|
|
||||||
|
# Extrahieren der Texte und Konfidenzwerte
|
||||||
|
extracted_results = []
|
||||||
|
for item in result[0]:
|
||||||
|
box = item[0] # Die Koordinaten der Textbox
|
||||||
|
text = item[1][0] # Der erkannte Text
|
||||||
|
confidence = item[1][1] # Der Konfidenzwert
|
||||||
|
extracted_results.append({
|
||||||
|
'box': box,
|
||||||
|
'text': text,
|
||||||
|
'confidence': confidence
|
||||||
|
})
|
||||||
|
|
||||||
|
return jsonify(extracted_results)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
return jsonify({'error': str(e)}), 500
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(host='0.0.0.0', port=5000, debug=True)
|
||||||
|
|
@ -0,0 +1,114 @@
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
from io import BytesIO
|
||||||
|
import traceback
|
||||||
|
import numpy as np
|
||||||
|
import cv2 # Import von OpenCV
|
||||||
|
import os # Import für das Speichern von Dateien
|
||||||
|
import time # Import für Zeitstempel
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
# Initialisiere PaddleOCR einmal außerhalb der Anfrage, um die Leistung zu verbessern
|
||||||
|
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Initialisierung außerhalb des Handlers
|
||||||
|
|
||||||
|
@app.route('/ocr', methods=['POST'])
|
||||||
|
def ocr_endpoint():
|
||||||
|
try:
|
||||||
|
if not request.is_json:
|
||||||
|
return jsonify({'error': 'Content-Type must be application/json'}), 400
|
||||||
|
|
||||||
|
data = request.get_json()
|
||||||
|
if not data or 'image' not in data:
|
||||||
|
return jsonify({'error': 'No image provided'}), 400
|
||||||
|
|
||||||
|
image_b64 = data['image']
|
||||||
|
if not image_b64:
|
||||||
|
return jsonify({'error': 'Empty image data'}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image_data = base64.b64decode(image_b64)
|
||||||
|
except Exception as decode_err:
|
||||||
|
return jsonify({'error': 'Base64 decode error', 'details': str(decode_err)}), 400
|
||||||
|
|
||||||
|
try:
|
||||||
|
image = Image.open(BytesIO(image_data)).convert('RGB')
|
||||||
|
image_np = np.array(image) # Konvertieren zu numpy.ndarray
|
||||||
|
except Exception as img_err:
|
||||||
|
return jsonify({'error': 'Invalid image data'}), 400
|
||||||
|
|
||||||
|
# Vorverarbeitung: Behalte nur dunkle (schwarze) Bereiche des Bildes
|
||||||
|
# Konvertiere das Bild zu Graustufen
|
||||||
|
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
||||||
|
|
||||||
|
# Wende einen Schwellenwert an, um nur die dunklen Bereiche zu behalten
|
||||||
|
threshold_value = 150 # Passe diesen Wert nach Bedarf an
|
||||||
|
_, mask = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY_INV)
|
||||||
|
|
||||||
|
# Optional: Morphologische Operationen zur Verbesserung der Maske
|
||||||
|
kernel = np.ones((3,3), np.uint8)
|
||||||
|
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
||||||
|
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel, iterations=1)
|
||||||
|
|
||||||
|
# Wende die Maske auf das Originalbild an
|
||||||
|
filtered_image_np = cv2.bitwise_and(image_np, image_np, mask=mask)
|
||||||
|
|
||||||
|
# Konvertiere das gefilterte Bild zurück zu PIL Image
|
||||||
|
filtered_image = Image.fromarray(filtered_image_np)
|
||||||
|
|
||||||
|
# Optional: Bildgröße anpassen, falls erforderlich
|
||||||
|
max_width = 1920
|
||||||
|
max_height = 1080
|
||||||
|
height, width, _ = filtered_image_np.shape
|
||||||
|
if width > max_width or height > max_height:
|
||||||
|
aspect_ratio = width / height
|
||||||
|
if aspect_ratio > 1:
|
||||||
|
new_width = max_width
|
||||||
|
new_height = int(max_width / aspect_ratio)
|
||||||
|
else:
|
||||||
|
new_height = max_height
|
||||||
|
new_width = int(max_height * aspect_ratio)
|
||||||
|
filtered_image = filtered_image.resize((new_width, new_height))
|
||||||
|
filtered_image_np = np.array(filtered_image)
|
||||||
|
|
||||||
|
# **Speichern des vorverarbeiteten Bildes zur Überprüfung**
|
||||||
|
output_dir = 'processed_images'
|
||||||
|
if not os.path.exists(output_dir):
|
||||||
|
os.makedirs(output_dir)
|
||||||
|
|
||||||
|
# Generiere einen einzigartigen Dateinamen basierend auf dem aktuellen Zeitstempel
|
||||||
|
timestamp = int(time.time() * 1000)
|
||||||
|
processed_image_path = os.path.join(output_dir, f'processed_{timestamp}.png')
|
||||||
|
filtered_image.save(processed_image_path)
|
||||||
|
print(f'Processed image saved at: {processed_image_path}')
|
||||||
|
|
||||||
|
# **Speichern der Maske zur Überprüfung**
|
||||||
|
mask_image = Image.fromarray(mask)
|
||||||
|
mask_image_path = os.path.join(output_dir, f'mask_{timestamp}.png')
|
||||||
|
mask_image.save(mask_image_path)
|
||||||
|
print(f'Mask image saved at: {mask_image_path}')
|
||||||
|
|
||||||
|
# Führe OCR auf dem gefilterten Bild durch
|
||||||
|
result = ocr.ocr(filtered_image_np, rec=True, cls=True)
|
||||||
|
|
||||||
|
# Extrahieren der Texte und Konfidenzwerte
|
||||||
|
extracted_results = []
|
||||||
|
for item in result:
|
||||||
|
box = item[0] # Die Koordinaten der Textbox
|
||||||
|
text = item[1][0] # Der erkannte Text
|
||||||
|
confidence = item[1][1] # Der Konfidenzwert
|
||||||
|
extracted_results.append({
|
||||||
|
'box': box,
|
||||||
|
'text': text,
|
||||||
|
'confidence': confidence
|
||||||
|
})
|
||||||
|
|
||||||
|
return jsonify(extracted_results)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
return jsonify({'error': str(e)}), 500
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(host='0.0.0.0', port=5000, debug=True, threaded=False) # Single-Threaded
|
||||||
|
|
@ -0,0 +1,206 @@
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
from io import BytesIO
|
||||||
|
import traceback
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
from deck_endpoints import deck_bp # Importieren des Blueprints
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.DEBUG,
|
||||||
|
format='%(asctime)s - %(levelname)s - %(message)s'
|
||||||
|
)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
app.register_blueprint(deck_bp) # Registrieren des Blueprints
|
||||||
|
|
||||||
|
def get_dir_name():
|
||||||
|
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
|
||||||
|
unique_id = str(uuid.uuid4())[:8]
|
||||||
|
return f"{timestamp}_{unique_id}"
|
||||||
|
|
||||||
|
def create_debug_directory(dir_name):
|
||||||
|
"""Erstellt ein eindeutiges Verzeichnis für Debug-Bilder"""
|
||||||
|
base_dir = 'debug_images'
|
||||||
|
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
|
||||||
|
unique_id = str(uuid.uuid4())[:8]
|
||||||
|
full_path = os.path.join(base_dir, dir_name)
|
||||||
|
|
||||||
|
# Erstelle Hauptverzeichnis falls nicht vorhanden
|
||||||
|
if not os.path.exists(base_dir):
|
||||||
|
os.makedirs(base_dir)
|
||||||
|
|
||||||
|
# Erstelle spezifisches Verzeichnis für diesen Durchlauf
|
||||||
|
os.makedirs(full_path)
|
||||||
|
|
||||||
|
return full_path
|
||||||
|
|
||||||
|
def preprocess_image(image, debug_dir):
|
||||||
|
"""
|
||||||
|
Verarbeitet das Bild und speichert Zwischenergebnisse im angegebenen Verzeichnis
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
||||||
|
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
||||||
|
enhanced = clahe.apply(gray)
|
||||||
|
denoised = cv2.fastNlMeansDenoising(enhanced)
|
||||||
|
_, binary = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||||
|
|
||||||
|
# Speichern der Zwischenergebnisse im spezifischen Verzeichnis
|
||||||
|
cv2.imwrite(os.path.join(debug_dir, 'gray.png'), gray)
|
||||||
|
cv2.imwrite(os.path.join(debug_dir, 'enhanced.png'), enhanced)
|
||||||
|
cv2.imwrite(os.path.join(debug_dir, 'denoised.png'), denoised)
|
||||||
|
cv2.imwrite(os.path.join(debug_dir, 'binary.png'), binary)
|
||||||
|
|
||||||
|
logger.info(f"Debug images saved in: {debug_dir}")
|
||||||
|
return binary
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Preprocessing error: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
@app.route('/api/ocr', methods=['POST'])
|
||||||
|
def ocr_endpoint():
|
||||||
|
try:
|
||||||
|
# Erstelle eindeutiges Debug-Verzeichnis für diesen Request
|
||||||
|
dir_name = get_dir_name()
|
||||||
|
debug_dir = create_debug_directory(dir_name)
|
||||||
|
logger.info(f"Created debug directory: {debug_dir}")
|
||||||
|
|
||||||
|
if not request.is_json:
|
||||||
|
return jsonify({'error': 'Content-Type must be application/json'}), 400
|
||||||
|
|
||||||
|
data = request.get_json()
|
||||||
|
if not data or 'image' not in data:
|
||||||
|
return jsonify({'error': 'No image provided'}), 400
|
||||||
|
|
||||||
|
image_b64 = data['image']
|
||||||
|
|
||||||
|
# Base64 Dekodierung
|
||||||
|
try:
|
||||||
|
image_data = base64.b64decode(image_b64)
|
||||||
|
except Exception as decode_err:
|
||||||
|
logger.error(f"Base64 decode error: {str(decode_err)}")
|
||||||
|
return jsonify({'error': 'Base64 decode error'}), 400
|
||||||
|
|
||||||
|
# Bildverarbeitung
|
||||||
|
try:
|
||||||
|
image = Image.open(BytesIO(image_data)).convert('RGB')
|
||||||
|
image = np.array(image)
|
||||||
|
logger.info(f"Image loaded successfully. Shape: {image.shape}")
|
||||||
|
|
||||||
|
# Originalbild speichern
|
||||||
|
cv2.imwrite(os.path.join(debug_dir, 'original.png'),
|
||||||
|
cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
||||||
|
except Exception as img_err:
|
||||||
|
logger.error(f"Image processing error: {str(img_err)}")
|
||||||
|
return jsonify({'error': 'Invalid image data'}), 400
|
||||||
|
|
||||||
|
# Bildvorverarbeitung
|
||||||
|
processed_image = preprocess_image(image, debug_dir)
|
||||||
|
logger.info("Preprocessing completed")
|
||||||
|
|
||||||
|
# PaddleOCR Konfiguration
|
||||||
|
ocr = PaddleOCR(
|
||||||
|
use_angle_cls=True,
|
||||||
|
lang='en',
|
||||||
|
det_db_thresh=0.3,
|
||||||
|
det_db_box_thresh=0.3,
|
||||||
|
det_db_unclip_ratio=2.0,
|
||||||
|
rec_char_type='en',
|
||||||
|
det_limit_side_len=960,
|
||||||
|
det_limit_type='max',
|
||||||
|
use_dilation=True,
|
||||||
|
det_db_score_mode='fast',
|
||||||
|
show_log=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# OCR durchführen
|
||||||
|
try:
|
||||||
|
result = ocr.ocr(processed_image, rec=True, cls=True)
|
||||||
|
|
||||||
|
# Debug-Informationen in Datei speichern
|
||||||
|
with open(os.path.join(debug_dir, 'ocr_results.txt'), 'w') as f:
|
||||||
|
f.write(f"Raw OCR result:\n{result}\n\n")
|
||||||
|
|
||||||
|
if not result:
|
||||||
|
logger.warning("No results returned from OCR")
|
||||||
|
return jsonify({
|
||||||
|
'warning': 'No text detected',
|
||||||
|
'debug_dir': debug_dir
|
||||||
|
}), 200
|
||||||
|
|
||||||
|
if not result[0]:
|
||||||
|
logger.warning("Empty results list from OCR")
|
||||||
|
return jsonify({
|
||||||
|
'warning': 'Empty results list',
|
||||||
|
'debug_dir': debug_dir
|
||||||
|
}), 200
|
||||||
|
|
||||||
|
# Ergebnisse verarbeiten
|
||||||
|
extracted_results = []
|
||||||
|
for idx, item in enumerate(result[0]):
|
||||||
|
try:
|
||||||
|
box = item[0]
|
||||||
|
text = item[1][0] if item[1] else ''
|
||||||
|
confidence = float(item[1][1]) if item[1] and len(item[1]) > 1 else 0.0
|
||||||
|
|
||||||
|
extracted_results.append({
|
||||||
|
'box': box,
|
||||||
|
'text': text,
|
||||||
|
'confidence': confidence,
|
||||||
|
'name': dir_name
|
||||||
|
})
|
||||||
|
except Exception as proc_err:
|
||||||
|
logger.error(f"Error processing result {idx}: {str(proc_err)}")
|
||||||
|
|
||||||
|
# Statistiken in Debug-Datei speichern
|
||||||
|
with open(os.path.join(debug_dir, 'statistics.txt'), 'w') as f:
|
||||||
|
f.write(f"Total results: {len(extracted_results)}\n")
|
||||||
|
if extracted_results:
|
||||||
|
avg_confidence = np.mean([r['confidence'] for r in extracted_results])
|
||||||
|
f.write(f"Average confidence: {avg_confidence}\n")
|
||||||
|
f.write("\nDetailed results:\n")
|
||||||
|
for idx, result in enumerate(extracted_results):
|
||||||
|
f.write(f"Result {idx+1}:\n")
|
||||||
|
f.write(f"Text: {result['text']}\n")
|
||||||
|
f.write(f"Confidence: {result['confidence']}\n")
|
||||||
|
f.write(f"Name: {dir_name}\n")
|
||||||
|
f.write(f"Box coordinates: {result['box']}\n\n")
|
||||||
|
|
||||||
|
return jsonify({
|
||||||
|
'status': 'success',
|
||||||
|
'results': extracted_results,
|
||||||
|
# 'debug_info': {
|
||||||
|
# 'total_boxes_detected': len(result[0]) if result and result[0] else 0,
|
||||||
|
# 'processed_results': len(extracted_results),
|
||||||
|
# 'debug_dir': debug_dir
|
||||||
|
# }
|
||||||
|
})
|
||||||
|
|
||||||
|
except Exception as ocr_err:
|
||||||
|
logger.error(f"OCR processing error: {str(ocr_err)}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
return jsonify({
|
||||||
|
'error': 'OCR processing failed',
|
||||||
|
'details': str(ocr_err),
|
||||||
|
'debug_dir': debug_dir
|
||||||
|
}), 500
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Unexpected error: {str(e)}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
return jsonify({
|
||||||
|
'error': 'Internal server error',
|
||||||
|
'debug_dir': debug_dir if 'debug_dir' in locals() else None
|
||||||
|
}), 500
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(host='0.0.0.0', port=5000, debug=True)
|
||||||
|
|
@ -0,0 +1,5 @@
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
|
||||||
|
# Lade das PaddleOCR-Modell herunter
|
||||||
|
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Hier wird das vortrainierte Modell heruntergeladen
|
||||||
|
|
||||||
|
|
@ -0,0 +1,29 @@
|
||||||
|
import paddle
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
from ppocr.architectures import build_model
|
||||||
|
import paddle.static as static
|
||||||
|
|
||||||
|
# Initialisiere das OCR-Modell
|
||||||
|
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
||||||
|
|
||||||
|
# Spezifikation der Eingabe - das Modell erwartet ein RGB-Bild der Größe 640x640
|
||||||
|
input_spec = static.InputSpec(shape=[1, 3, 640, 640], dtype='float32', name='image')
|
||||||
|
|
||||||
|
# Exportiere das Modell ins ONNX-Format
|
||||||
|
def export_to_onnx():
|
||||||
|
paddle.enable_static()
|
||||||
|
model_dir = './inference/ch_ppocr_mobile_v2.0_det_infer/' # Pfad zum vortrainierten Modell
|
||||||
|
model_file = f'{model_dir}/model'
|
||||||
|
params_file = f'{model_dir}/params'
|
||||||
|
|
||||||
|
paddle.onnx.export(
|
||||||
|
model=model_file,
|
||||||
|
path='paddleocr_model.onnx',
|
||||||
|
input_spec=[input_spec],
|
||||||
|
model_params=params_file,
|
||||||
|
opset_version=11,
|
||||||
|
)
|
||||||
|
print("Modell wurde erfolgreich nach ONNX exportiert.")
|
||||||
|
|
||||||
|
export_to_onnx()
|
||||||
|
|
||||||
Loading…
Reference in New Issue